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Abstract--A theory is developed for calculating the velocity of sound in solid-gas and liquid-gas 
systems. Using mass and momentum balances, an equation is obtained which shows that the 
velocity of sound depends on the relative velocity between the two phases, on the ratio of densities, 
on the porosity, on the particle diameter, on the drag coefficient, and on the frequency of sound. 

The theory can be applied only if the one phase is distributed in the other homogeneously in 
the form of particles, droplets or bubbles of equal size. The experimental results agree very well 
with the theory. 

Based on Hertz's equation for the deformation of spheres, a further theory is described which 
enables calculation of the velocity of sound in gas-solid systems of low porosity, such as packings 
or porous bodies. 

1. I N T R O D U C T I O N  

Sonic and ultrasonic waves are finding wide application in the chemical and process 
industries because of their beneficial effects. The following examples may be given: improve- 
ment of the stability of fluidized beds (Morse 1955; Molerus 1967), improvement of the 
flow properties of fine materials (Medcraft 1971), and as a means of coagulating fine 
mists by facilitating their separation (Green & Lane 1964, Podol'skii & Turubarov 1966). 
Furthermore, there are many technical problems associated with the interaction of sonic 
waves and two-phase-media; these occur in pneumatic transport (Weber 1973), the spread- 
ing of oil-droplets in burners (Scholz 1972), jet milling (Muschelknautz & Rink 1971), the 
determination of Young's modulus in bulk materials (Meister 1968) and the measurement 
of porosity in fluidized beds (Grek & Kiselnikov 1964). The geophysical investigation of 
rocks, sands and other materials (Wachholz 1962) and the problem of the propagation 
of sound in structures (Cremer & Heckl 1967) are also subjects whose proper understanding 
requires the investigation of the general behaviour of sonic waves in multiphase systems. 

The attenuation of sound has been investigated by many authors. Rayleigh (1877) and 
Sewell (1910) published the first papers in this field; more recently Epstein & Carhardt 
(1953), Goldman (1970) and Soo (1960) have put forward more detailed and precise theories. 
Many other authors have contributed to this problem but the attention of the present 
paper is confined to the velocity of sound in two-phase media. Less work has been done in 
this field: Zink & Delasso (1958), Temkin & Dobbins (1966), and Soo (1967) are almost 
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the only authors who have dealt with this problem. Their theories consider viscous inter- 
action and heat transfer in a system of fine solid particles suspended in a gas, the relative 
velocity between the phases being overlooked. Other authors like Fischer (1967) and 
Deich et al. (1964) define an average density of gas and solid phase and calculate the velocity 
of sound by using the well-known Laplace's equation (Gerthsen 1971), which is only valid 

for a unique phase. 
Recently, Rumpf & Gregor (1973) investigated the velocity of sound m a solid gas 

mixture flowing in the direction of sound propagation. Applying mass and momentum 
balances to the advancing pressure wave. they found the sonic velocity to depend on the 
porosity, on the density-ratio, on the relative velocity and on the relative acceleration 
between the phases. To a first approximation the latter was found to be a function of the 
particle diameter, the drag coefficient and the sound frequency. 

2. V E L O C I T Y  O F  S O N I C - W A V E  P R O P A G A T I O N  IN A T W O - P H A S E  S U S P E N S I O N  

A suspension containing two different phases. F and S. is considered. The velocity of 
phase F is given by i~, the velocity of phase S by w: thus the relative velocity between the 
two phases is: 

The respective densities of the compressive phases are pf and p~. The phase S is homo-~ 
geneously distributed in the phase F. The porosity ~; is defined as the ratio of the area 
occupied by phase F, to the total cross-sectional area. If a small pressure wave with an 
absolute velocity a passes through this suspension, then the velocities, densities, and the 
porosity are changed as shown in figure la, wherein no thermodynamic effects are con- 
sidered, because, as already pointed out by Soo (1967), the dispersion of sound is mainly 
determined by the viscous interaction between the two phases and the effect of heat transfer 
can therefore be neglected. If the element considered is moving with the same velocity a 
as the advancing pressure wave, a steady state is reached (figure I b). The velocity of sound 
a~ in a suspension is defined as the velocity of the pressure wave relative to the motion of 

phase F: 
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Figure 1. Propagat ing pressure wave with (a) fixed volume element; and (b) moving volume element 
(steady state). 
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In accordance with figure lb mass balances for the phases F and S yield 

( a  - v ) . e . p  r = ( a  - v - A v ) ( p f  + p f ) ( s  + As) 
[3] 

(a - w)(1 - s )p  s = (a - w - A w ) ( p s  + aPs)(1 - s - As) 

and the momentum balance gives: 

p + (a - v - Av )Z(p f  + Apl)(e + At) + (a - w = Aw)Z(ps  + Ap~)(1 - e - As) 

= (a - v )2epf  + (~ - w)2(1 - e).ps [4] 

wherein each term has the dimension of momentum flux per unit cross-sectional area. 
The velocity of sound in the pure phases F and S is given by Laplace's equation: 

a j .  = , a s  = . [ 5 ]  

Replacing the differentials in E5] with the ratios of the corresponding increments, and 
using Eli-E5], the following expression for the velocity of sound afs in a suspension may 
be obtained: 

1 - s ay  s A w  

1 1  + p l l  e l )  1 + - -  - -  S a f s  --~ Vre I A V  2 

 's14 ps s / :  s(1 + • • Awl = 1 - s a f ,  + Ure I P s .  ' [6] 

e a f ,  P l  A v  ] 

An unknown value in [6] is the relative acceleration A w / A v  of both phases. 
For determining this term the volume element of the suspension, to which the mass 

and momentum balances have been applied, is split into one part for phase F and into 
another for phase S. Then the drag force between both phases Wfs related to the total 
cross-sectional area A has to be considered (figure 2). 
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In this analysis any velocity dis t r ibut ions which might normal ly  occur wilhin the phases 
S and F are ignored;  neither do we consider in detail how. whether  by impulses or momen-  

tum exchange with the walls or by field forces, a relative velocity l'r. ~ between the two 
phases could be brought  about  in the otherwise undis turbed mot ion  of the suspension. 

A constant  force K which is equal to the drag force H,}~ in the s teady-state  case must act 

on the volume element of phase S m order  to obta in  the slip velocity. 1o  cstablish an 

equil ibrium the same force K must act on the phase •:'. The pressure drop  which is present 

in any flow in the direction of mot ion  is not involved here. Only the oscillating pressure 

(ampli tude Ap), which is due to the sound wave and which is super imposed  on the above 

ment ioned  pressure drop, is the cause of the changes considered in velocities, densities 
and in the porosity.  The total  drag force WI, , must  be reduced by the force K so that only the 
difference in the drag force resulting from the pressure difference Ap appears  m the tbl lo~-  
ing two m o m e n t u m  balances:  

P h a s e  F 

P h a s e  S 

. - l a f  ~ - Ac)a(,0r + A/{/.)(~: .4- A,~¢) + af.~;[{ f _. ~:- AI) -F .~t =: ()" 

- - ( a f a  -b l!rel - -  Awl2(Pa q- Ap0(I  - ~: - Ac) + la,. ~ + t'~0Z(l - c)p, 

- ( 1  - ~ : ) A p -  14)) K = 0 .  
,4 

[7b] 

The  sum of [7a] and [7b] is the total m o m e n t u m  balance given by [4]. 

Assuming the suspended particles, droplets,  or bubbles  of phase S to be of spherical 
shape and uniform diameter  dp, then the number  N of them in the volume element A • A 1 

of the suspension is given by: 

tl -- c ) ' A ' A I  

If the total drag force is equal to the sum of the drag forces acting on the independent  

and freely moving  particles, it follows that :  

Ws, N 1 ~z 1 r ~1 
= • " • j , ,  [t,(x) - w(x)] z dx r9] 

J~ .4 _ < c " ' ; 4 G  X i  =~," 

and K is given by 

K / A  = ( N / A ) .  ½. c , , . p f . ( u / 4 ) . d ~ , ,  c~e ~. [10] 

Due to the sound wave both phases oscillate sinusoidally with the same frequency v but 
with different ampli tudes.  Fur the rmore ,  a phase-lag between the two mot ions  exists. If 
the length of the volume element A1 is chosen just as ~ of the wavelength (figure 2) it follows 
that  within this length the velocities of the phases must  vary from (a - v) to (a - ~ -- Alq 
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and from (a - w) to (a - w - Aw), respectively, and the following expressions are then 
valid: 

A1 = asj4V 

t;(x) = as~ - At;" sin ~- 

Then, if At; and Aw are small compared with t;r~l, the following integration yields: 

[11] 

[12] 

- - t ; r e I  = - - t ; r o I  ~q_ ]x=o (t; w)Zdx  2 ~ At; - Aw .  x / ~  sin 1 - [13] 

Substituting from [3], [8], [9], [10], [11], and [13] into [7a] and [7b], two linear equations 
for Aw and Av are obtained, which lead to the result: 

Aw 1 + G/e 
- -  = [ 1 4 ]  

At; afs + t;rel'P~s 4- Pf ~ 1 - 2sI]'All.j 

whereas: 

3 Cw Vrel -- 2" p~ g~'vre~l, [15a] 
4re v d v py wf " co Ws 

G =  
9 qs P~ g or . . . .  when Stokes' law applied. [15b] 
n Ps'V'd~ PS WS'CO 

If Stokes' law applies the calculation is slightly different, since the velocities under the 
integral in [9] are now linear, resulting in a different value for G (see [15b] above), w s is the 
settling velocity of the particles as defined by Rumpf & Gregor (1973), co is the angular 
frequency of the sound waves (co = 2nv), and qs is the dynamic viscosity of the fluid. 

In general, the phases do not oscillate with a considerable lag between them, the oscilla- 
tion of phase S being only slightly behind that of phase F, according to the different inertias. 
I fs  << A1 or ifp~ >> Ps, then [14] can be written as: 

Aw 1 + (G/e) 
[16] 

Av (afs -t.- Vrel)/afs "(pjpf )  + G/'e" 

With [6] and [16] the velocity of a sound wave in a two-phase suspension can be calculated. 

3.1 Velocity o f  sound in a solid-gas suspension 

In a two-phase suspension consisting of freely moving solid particles distributed in the 
continuous gaseous phase, the velocity of sound in the solid particles a s is very much higher 
than that in the gas as. Furthermore, Ps is much greater than P¢ and the value of e is close 
to 1. Therefore in [6] the term (Ps/P~)" (1 - e)/e. (1/a ]) can be neglected; it becomes exactly 



758 W. GREGOR and H. RUMPF 

equal to zero, if the solid particles are considered to be incompressible (a~ --, ~) .  Under 
this condition, [6] and [16] yield: 

( " ) i i . ) • - 1 +  - o  + c ,  + ~ . 2 . : ' ~  ~ + - - G  
a: !  m c \ a: 1 ( :!/~ . 

+ " ( f ) j ~ a : ]  • l + ~: - G + 1 P/ c ~:') 

ar a/ ,o: ~ \ a l l  / ) :  

+ GI-!"~'  
el: 

[173 

For a constant ratio of densities, Ps/P: = 2000, the solution of [ 17j, viz. the sound velocity 
in the suspension ars related to the sound velocity in the pure gas as, as a function of the 
porosity e the relative velocity V,e~/a: and the parameter G, is plotted in figure 3 for values 
of Vre~/a: = 0, 0.030, 0.076, 0.152 corresponding to v~e~ = 0, 10, 25, 50 m/s respectively, and 
a: = 330 m/s in all cases. 

Since the curves in figure 3 do not vary much with respect to Vre~, the relative sound 
velocity a:s/a: is plotted in figure 4 without regard to the influence of v,o~, i.e. the curves 
are calculated by putting v,e~ = 0 in [173. It must be pointed out that only the direct in- 
fluence of V,e ~ in [17] is neglected, since the parameter G also contains Vre~ (see [15a])and 
therefore the value of Ure I still determines the sound velocity. Several special cases have to 
be considered: 

(1) If the value of the particle size or of the frequency approaches zero (dp ~ 0 or v --, 0), 
then [151 and [16] yield: 
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Figure 3. Velocity of sound in a solid-gas suspension depending on parameter G, porosity e, and 
relative velocity v,e I (density-ratio p.~/pj = 2000). 
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Figure  4. Veloci ty of sound  in a so l id -gas  suspens ion  depend ing  on pa rame te r  G, poros i ty  e, and  

dens i ty- ra t io  PiPs (influence of vr, j neglected). 

i.e. the sound velocity has the lowest possible values, as already shown by Rumpf & Gregor 
(1973). 

(2) If the ratio of the densities increases to infinity (Ps/Pl --' ~ ) ,  [16] yields: Aw/Av  = 0 

and hence: 

als l ~0 i f G ~  
[181 

- -  = /  1 - e  i fG = 0. af I Os/Oi~ ~ 1 + • G 
4 

The velocity of sound decreases with decreasing particle size, with decreasing frequency, 
and with increasing ratio of densities. Only if (i) the value of the particle size or of the 
frequency becomes zero and if (ii) at the same time the ratio of the densities rises to infinity, 
does the value of the sound velocity become zero. In this case the propagation of a sonic 
wave would no longer be possible, because the infinitely small particles would oscillate 
with the same amplitude as the gas (Aw/Av = 1, see item 1 above) but, due to their infinitely 
large mass, the whole sonic energy would be dissipated. 

(3) Compared with the pure gas, the solid particles in a solid-gas suspension displace 
gas volume elements and thus, during the passage of a pressure wave, they are subjected 
to a momentum which cannot be less than the one which would act on the displaced 
gas volume elements. This momentum results in a change of velocity, Aw, which therefore 
cannot become arbitrarily small. 

The velocity of sound in the suspension must always be smaller than in the pure gas. This 
condition, ayjay < 1, when applied to [6], leads to the inequality: 

1 Aw 
< - -  < 1. [19] 

(vre~/a I + 1)" p~ 1 Av - 
& e(v,o~/a I + 1) 

J.M.F., Vol. I, No. 6--C 
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Hence, from [16] and [t9], the limits for the parameter G may be obtained: 

1 

~ v  J 
p/.\ a/ I ar ~: 

[2o] 

Therefore in figures 3 and 4 the parameter G varies between Grnin and ~ .  

It should be noticed that, whenever both phases flow without any relative velocity 
(v,e I = 0), and have the same accelerations (Aw/Av = 1 or G ~ ~),  the velocity of sound is 
then given by: 

a~ ;:-[~: + (1 - ~ ) t p 2 p : ) ]  

This equation may also be obtained by applying I,aplace's equation for the propagation 
of sound waves in a two-phase media, as has been shown by Hinrichs (1965), Pfleiderer 
(1957), and Gouse & Brown (1964). 

3.2 Velocity of sound in a liquid-gas suspension 

If liquid droplets are suspended homogeneously in a continuous gaseous phase, [t7] 
or figures 3 and 4 can be used for determining the velocity of sound, if the subscript "s" 
for solid is substituted by "/" for liquid. The subscript '~/'" now stands for the gas. It must 
be made sure that the expression, (p:/ps).(1 - e)/e. (1/a2), in [6] is still negligible compared 
with 1/a}, otherwise the complete [6] and [16] have to be applied. 

If the porosity e becomes small, say e < 0.7, then the liquid phase can no longer be 
considered as freely moving droplets distributed in a continuous gaseous phase (spray 
flow). A wavy or stratified flow, also a slug or even plug flow is obtained with smaller 
e-values, making the application of the given theory impossible. In the case of bubble 
flow, the theory can be used, but it needs some modifications, as will now be explained. 

The continuous phase is now the liquid phase, and the gaseous phase is distributed 
homogeneously as bubbles. It is more useful to relate the velocity of sound a:~ in the liquid-- 
gas suspension to the motion of the liquid phase (L): 

a n = a - w. [21] 

Since aye = a:~ - V,el the following relation is obtained instead of [6]: 

a 2 [ 1  pf 1 - e  1)  l - F ( 1 - e ) / e ' ( a r l - G e l ) / a f l ' ( A w / A v )  ( a:z ) 2 

: ' 1 4  + . . . . .  Pt e @ e(1 + (1 - e)/e" an/(a n - vreO'(pz/py)" Aw/Av) ay~ Ure I 

[22] 

and instead of [16]: 

A w  _ (a:, - v ,o l ) /ae~ . (p : /pk  + q / ( 1  - e) 
Av 1 + G(1 - e) [23] 
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G = 

3 . Cw • Vrel 
47r v" dp 

. tit 
x p t ' v ' d  2 

Stokes' law. 

[24] 

Here dp is the bubble diameter and tit is the viscosity of the liquid phase. Two special 
cases are considered: 

(1) G --, ~ ,  i.e. bubble diameter dp = 0, or frequency v = 0 yields: 

A w / A v  = 1. 

Since in this case the number of bubbles is infinite for a given e-value, the sound velocity 
is the lowest. 

(2) If the ratio of the densities increases to infinity (Pl/P: ~ ~),  the result of [22] is: 

a f l  : -  Ure i . 

Because in the continuous liquid phase no sound propagates due to its infinite density, 
the sound is transported only by the compressible gas bubbles moving with a velocity of 
vre I relative to the liquid. 

An example for the velocity of sound in a liquid-gas suspension, covering the whole 
porosity range from e = 0 to e = 1, is shown in figure 5. The curves are calculated using 

[6] with Ure I = 0 :  

1 - e  Aw 
1 + - -  ° _ _  

e Av 

e l +  . . . .  + - - .  • 
e pf  p~ e 

[25] 

1 + (G/e) 

A w = (p,lpf) + (G/e) 

Av  (Pf/Ps) + G/(1 - e) 

1 

according to [16] if0.5 < e < 1 

according to [23] if 0 _< e < 0.5. 

As mentioned above the present theory is not valid in the middle porosity range because 
neither phase can be regarded as dispersed in the other. 

Only when both phases have the same acceleration ( A w / A v  = 1, i.e. G ~ ~ )  are con- 

tinuous curves obtained for the whole porosity range. This is possible if the size of the 
droplets or bubbles of the suspended phase is infinitely small (dp = 0) or if the densities 
are equal (Pc = Pl). Equation [25] can then be written as: 

- - - -  + ( l - e ) - - -  1 + - - '  l + e  - 1  
a/2' ~Pl a~ " 
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Figure 5. Velocity of sound in a liquid -gas suspension depending on parameter G, porosity ~:, and 
density-ratio P,/P r 

By applying Laplace's equation to a two-phase system this expression was also obtained 
by B6ckh & Chawla (1972). 

3.3 Velocity of sound in solid-gas systems of low porosity 

For a solid-gas mixture with a low porosity it is no longer possible to apply the given 
theory, because the gas bubbles are not freely moving in the solid, continuous phase. The 
elastic behaviour of loosely packed particles such as sand is very different from that of 
bulky porous materials such as sintered metals. The velocity of sound in such media can 
also be influenced by the packing structure, particle- and pore-size distribution, and by 
the type of bonding between the particles. So far no theory exists which considers all these 
factors. 

A simple theory has been put forward by Wyllie, Gregory & Gardner (1956), which yields 
an equation for the sonic velocity by means of a linear interpolation, with respect to the 
porosity between the travel time of a sound wave in the pure solid material and that in the 
pure fluid. Wachholz (1962) has improved this theory with a cubic interpolation in which 
the necessary constants are chosen so as to fit the experimental data. 

Biot's theory (1955) is very much more refined, but assumes the density of the fluid 
saturating the pores to be similar to the density of the solid, Geertsma & Smit (1961) apply 
this theory for geophysical purposes. 

White & Sengbush (1953) present a theory for determining the sonic velocity in a simple 
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cubic packing of spherical particles, but their equation is obtained for the seismic velocity 
at  shallow depths in the earth with all the consequent restrictions. Another similar theory, 
put forward by Meister (1968), is only valid for two values of the porosity and does not 
show clearly what the effect of the porosity is. 

The present investigations are confined, on the one hand, to sintered materials containing 
gas-pores and on the other to packed particles. 

Gregor (1971) compared the dynamically measured Young's modulus of sintered 
materials with the statically measured Young's modulus. Since it could be shown that they 
are identical (with certain small restrictions which have to be made also in case of non- 
porous materials), the sonic velocity in a sintered material can be obtained by the same 
formula as for a non-porous material: 

ays = x / E f s / p f s .  [263 

Ey s is the Young's modulus of the porous material, and Pys is its density, being equal to 
(1 - ~ ) .  p s .  

Comparing the different theories for the calculation of EI~, Gregor (1971) found that 
the theory of Skorokhod (1963) was the most useful one. His result can be approximated 
by the formula 

E y J E s  = 1 - 2"e. [27] 

(E~ = Young's modulus of the non-porous material.) 

Equation [26] yields with [27]: 

afs _ \ / 1  - 2.~ 
as - -  1 ~- e [28] 

The dependence of El, ~ on the particle size has not been investigated systematically yet 
although Artusio et al. (1966) have mentioned the decrease of Young's modulus with 
increasing particle size. According to the sinter theory, in the first phase of the sintering 
procedure the particle diameter dp is proportional to b", where b is the neck diameter and 
a > 2. Therefore a sintered material with a larger particle size is less resistant to a deforma- 
tion than one with a smaller particle size. Thus Young's modulus and also the velocity 
of sound would decrease with bigger particles but no quantitative result, theoretical or 
experimental, has yet been obtained. 

A curve for Eis which fits very well has been experimentally obtained by McAdam 
(1951): 

E I s / E  ~ = (1 - g ) 3 . 4 .  [29] 

This equation not only fits his own experimental values but also those of other authors 
like Tschechowa & Franzewitsch (1958) or Knudsen (1962). The combined result of [26] 
and [29] is the following experimentally found relationship: 

ai~/a ~ = (1 - e) 1"2. [30] 

For determining the sonic velocity in packed materials such as sand, a simple model 
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of a chain of equal spheres lying beside each other is chosen. If this chain is compressed 
elastically the stress-strain diagram gives the parabola a = C. (AI / t )  3/2 according to 
Hertz's equation for the deformation of spheres. Since this curve has a horizontal tangent 
in the origin, Young's modulus at the origin is equal to zero and so is the sonic velocity. 
In connection with their theoretical and experimental investigations at shallow depths 
in the earth White & Sengbush (1953) have already stated this fact; they found a propor- 
tionality between the sonic velocity and the sixth root of the depth in the earth. 

In packed materials the bonding mechanism within the agglomerate is provided by the 
liquid bridges between the particles and by van der Waal's forces, the latter being negligibly 
small, as shown by Herrmann (1971). Due to these forces a certain preloading on the 
particles is always present in an agglomerate and, according to Schubert, Herrmann & 
Rumpf (1974), this force is almost equal to the tensile stress, a,, of the agglomerate. Since 
the applied pressure in a sound wave is very much smaller than the tensile stress of an 
agglomerate, Young's modulus can be defined as the derivative of the above-mentioned 
parabola of Hertz at the point when c~ = c~t, the tensile stress. Schubert, Herrmann & 
Rumpf (1974) obtained the result: 

Es~= 2 k9.(1 - v2) 2~:2ii~A [31i 

where v s is the Poisson-ratio of the non-porous material, dp is the particle diameter, and 
r is the radius of curvature (at the contact point), which is usually much smaller than the 
particle radius, dp/2, due to the rough particle surface• 

Equation [31] yields with [261: 

as • E s '  ( f  z 1 :2 )  2 . g2( 1 _ g )  [32] 

Because in the model used the agglomerate consists of spherical particles of equal size, 
[32] is not valid for e < 0.26. In the ease of non-uniform particles, the porosity can take 
even smaller values, so that [32] can only show the tendency and probably needs to be 

modified. 
In figure 6 for sintered materials [28] is compared with the experimental results given 

by [30]. 

The proposed theory for the velocity of sound in packed materials resulting in [32], 

different curves depending on the parameter 

Es(1 - v~) 2 .d  3 
o, 2r 

are obtained and also shown in figure 6. 

Comparison between theoretical and experimental results 

For checking the applicability of the theory, the theoretical results are compared in 
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figure 7 with experimental values obtained from a few sources in the literature where 
sufficient data about the experiments was given. 

a~ 

I ~ . - - - . .  l/;_-zf = 

°9 k " " ~ . ~ . - - . . . .  
o. \ ~ . ,  ~ .  

o.r \ ~ "~ 

~ / x . , .  -~' 
0,5 102/ 
0.4 I06-~ 
0.:5 ~ ~ i  
° .2  

0.1 

I ] [ I 0 0.1 0,2 0,3 0.4 

Figure 6. Theoretical and experimental results for the velocity of sound in solid-gas media with 
low porosity. 

In the case of solid-gas suspension (high porosity range) the results of [15] and [17] 
are compared with experiments carried out by Zink & Delasso (1958) and also reported 
by Temkin & Dobbins (1966). A comparison has also been made with the results of Soo 
(1967). 

Since in the theory the phase-lag between the two phases has been neglected, [16] gives 
the smallest possible values for Aw/Av and therefore the theory always yields higher 
values than the experiments do. 

For liquid-gas suspensions, the data obtained by B6ckh & Chawla (1973) fit well with 
the theory if the bubble or droplet size is put equal to zero, i.e. G ~ oo. Due to experi- 
mental difficulties the determination of d v was not possible. 

For checking [32] no experimental data could be found, but an example is given here, 
based on some yet unpublished work: 

According to Meister (1968) Young's modulus of quartz is equal to Es = 7.8 × 106 N/cm 2 
and the sound velocity in quartz is as = 5700 m/s. Assuming the particles to be smooth 
with d v = 2r, and at = 0.1 N/cm 2, which latter figure, according to Schubert, Herrmann 
& Rumpf (1974), is a reasonable value for "dry" agglomerates, the sound velocity in sand 
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Figure 7. Comparison between theoretical and experimental results. 

with a porosity of e = 0.43 is found from [32] to be at.~ ~ 500 m/s instead of as., = 370 m/s, 
the experimentally determined value of Hunter  & Matsukawa (1961). More experimental 

work in this field is necessary to check the proposed theory. 
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R6sum6--Une th6orie est dbveloppee afin de calculer la vitesse du son dans des systemes solide ~, 
gazeux et liquide-gazeux. En 6quilibrant les masses et les moments, on obtient une 6quation 
montrant que la vitesse du son d6pend de la vitesse de glissement entre les deux phases, du rapport 
des densitbs, de la porosit6, du diam+tre de la particule, du coefficient de drainage, et de la frequence 
du son. 

La th6orie ne peut fitre appliqu6e que si une phase est distribuee d'une mani6re homog,Sne dans 
I'autre sous forme de particules, de gouttes ou de bulles de dimensions 6gales. Les r~suhats exp6ri- 
mentaux confirment tr~s bien la theorie. 
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Fond6e sur l'equation de Hertz de la d6formation sph6rique, une autre theorie est d6crite 
permettant de calculer la vitesse du son dans des syst6mes gazeux solides de faible porosit6, tels 
que des enveloppes ou des corps poreux. 

Auszug--Eine Th6orie zur Berechnung der Schallgeschwindigkeit in Feststoff-Gas bzw. Fltissig- 
keits Gas Gemischen wird mit Hilfe von Massen- und Impulsstrombilanzen abgeleitet. Die 
Schallgeschwindigkeit h/ingt ab von der Geschwindigkeitsdifferenz zwischen beiden Phasen, 
vorn Dichteverh/iltnis, vonder Porosit/it, vom Teilchendurchmesser, vom Widerstandskoeffizienten 
und vonder  Schallfrequenz. 

Die Theorie kann dann angewendet werden, wenn die eine Phase in der anderen homogen als 
Teilchen, Tropfen oder Blasen gleicher Gr6Be verteilt ist. Experimente zeigen eine sehr gute 
0bereinstimmung m~t der Theorie. 

Ferner wird eine Theorie angegeben, die auf der Hertz' schen Abplattung von Kugeln beruht 
und die es erlaubt, die Schallgeschwindigkeit in Feststoff-Gas Systemen mit niedrigen Porosit/iten, 
wie z.B. in Haufwerken oder por6sen K6rpern, zu berechnen. 

Pe3JoMe--Pa3artTa a-eopri~ a ~  paccqeTa cropocTI4 3ByKa B cricTeMax TBep~oe Te:Iox<riarocxH n 
Fa3-)I(I'I,RKOCTb. C rlOMOlIlbtO 6a3aHcbl Macc r~ MOMeHTOB, 6hi.riO noayqeHo ypaBnenne, noKa3- 
biBarouiee, tlTO CKOpOCTb 3syra 3aBI~CriT OT cKopocTH rlpOClgaJII,3blBaHltfl Me'~lly ,aByMn qba3aM}l, 
OT COOTHORIeHI4~I ll[rlaMeTpoB, OT rIopt,ICTOCTrl, OT KO3qbHHI'IeHTa 3arla3~blBaHi, Dt ri OT qaCTOTH 

3By~a. 
Id33araeMag TeopR,q MO~eT 6biTS npnMenena TO.rlbl(O B TOM cJlyqae, ecJii4 o~na qba3a pacnpe,a; 

eneHa B ~pyro.~ B Bl4~e qacTi, m, ranener nnH lly3blpbKOB paBHoro pa3Mepa FOMOFeHHOM o6pa3oM. 
Pae3yJ~bTaTH 9KcnepHMertTa rlOKa3BIBaR)T oqeHb xopomee cor.qacrie c )laHHO~ xeopt4e~. 

Onncano 12a.~bne~tuee pa3arfTne Teopnn, ocnoaannoe Ha ypaBHennrl Fepua a:I s aeqbopMatma 
cqbep~,i, qTO rlO3BO.rl~/eT pacctll4TaTb CKOpOCTb 3ByKa B Ma.rlOrlOptlCTOX ra30-TBep~bx CI, ICTeMax, 
KaK Hattpr~Mep Ha6HBKI'I I, I2IH rlopHCTble Tara. 


